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Abstract 
The article is devoted to the analysis and visualization of the generalized computational 

experiment results on the comparative analysis of the accuracy for a group of open software 
package OpenFOAM solvers. The basic problem here is the classical problem of the 
rarefaction wave formation in a flow. This problem has an exact solution which we use as 
etalon. The generalized computational experiment makes it possible to carry out parametric 
studies in a grid partition of the region in the space of defining parameters. The construction 
of a generalized computational experiment is based on the synthesis of mathematical 
modeling, parallel technologies and visual analytics. As a rule, the results obtained in such an 
experiment are multidimensional data, on the basis of which the objective functional is 
constructed, which is the main object of interest of the researcher. In this case, the defining 
parameters are the input stream Mach number and the flow deflection angle. The deviation 
from the exact solution calculated in the L1 and L2 norms is considered in the role of the 
objective functional. For each solver, a parametric problem is solved by varying the Mach 
number and flow deflection angle. The results obtained represent the dependence of the 
objective functional on the defining parameters for each solver. The results are presented in 
visual form as surfaces and in analytical form as polynomials.  

Keywords: comparative assessment of accuracy, OpenFOAM solvers, generalized 
computational experiment, rarefaction wave, processing of visual results, analytical form.  

 

1. Introduction 
The need to organize and conduct a comparative assessment of the numerical methods 

accuracy is growing significantly today. The reason for this is the emergence of a large 
number of new numerical methods, solvers developed on their basis, integrated into various 
software packages. At the same time, solver developers are far from always able to organize 
full testing and comparative assessment of accuracy on problems that have a reference 
solution. It should be remembered that, ultimately, both software packages and the solvers 
implemented in them are targeted at the end user who uses these software tools to solve 
practical problems. In this case, the end user must rely on something, and here comparative 
estimates of the solvers accuracy can help him. In order to provide the most comprehensive 
and complete comparison, it is necessary to carry out parametric studies. They allow 
comparative assessment not for one specific problem, but for a class of problems. Parametric 
numerical research is now being carried out very actively in various fields [1-4]. 

A generalized computational experiment will help to organize such numerical studies. 
The theory and methods of generalized computational experiment are being actively 
developed at the Keldysh Institute of Applied Mathematics of the RAS. A generalized 
computational experiment is a computational technology based on the synthesis of solutions 
to problems of mathematical modeling, the use of parallel technologies and methods of visual 
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analytics. The construction of such an experiment makes it possible to obtain a numerical 
solution for a class of problems determined by variations in the defining parameters in 
certain ranges. The region of the defining parameters is subdivided into a grid. At each point 
of such a partition, the problem of mathematical modeling is solved using parallel 
technologies. The result of such a calculation is multidimensional data, with the help of which 
valuable functionals are constructed as functions of several variables. The obtained data and 
functionals are explored using scientific visualization and visual analytics methods. The 
theoretical description of methods, tools and examples of constructing a generalized 
computational experiment is described in detail in the cycle of works [5-11]. With regard to 
the tasks of comparative assessment of the accuracy of solvers, the purpose of the study is to 
obtain comparison results in a visual form and in an analytical form. 

This work considers an example of the application of the generalized computational 
experiment to the problem of accuracy comparative estimation for several solvers of the open 
software package OpenFOAM [12]. The classical problem of a rarefaction wave formation in a 
flow is used as the basic problem. The class of problems is determined by the variation in the 
given ranges of two defining parameters - the freestream Mach number M and the flow 
deflection angle β. This problem has an exact solution described in [13-15]. This solution is 
used as a reference one. The deviation from the exact solution calculated in the L1 and L2 
norms is considered in the role of the objective functional. For each solver, a parametric 
problem is solved by varying the Mach number and flow deflection angle. The results 
obtained represent the dependence of the objective functional on the defining parameters for 
each solver. The results are presented in visual form as surfaces and in analytical form as 
polynomials. The results obtained make it possible to obtain a fairly complete idea of the 
accuracy of each of the solvers participating in the comparison in such an important class of 
problems as the rarefaction wave. 

2. Background – Previous Works 
This work continues a large cycle of works devoted to the development of methods for 

constructing a generalized computational experiment and its application to practical 
problems in computational gas dynamics [5-11,17-22]. In particular, the application of a 
generalized computational experiment to problems of comparative estimation of numerical 
methods accuracy is considered using examples of typical classes of problems. 

A number of characteristic directions presented in previous works can be distinguished: 
- the basic principles and methods of constructing a generalized computational 

experiment for problems of computational gas dynamics are presented in [5-10]; 
- a description of the main tasks of data visualization arising in the construction of a 

generalized computational experiment is presented in [11, 16]; 
- a description of the construction and implementation of a generalized computational 

experiment for problems of comparative assessment of numerical methods accuracy is 
presented in [17-21]. Papers [17-19] consider the problem of comparing the accuracy of 
various OpenFOAM solvers when flowing around cones at an angle of attack. This task has 
four defining parameters. Variations of the Mach number, the cone half-angle, the angle of 
attack, and the choice of the solver are considered. Results in a similar setting for the problem 
of of an oblique shock wave formation are presented in [20, 21]; 

- a description of the construction of analytical dependencies for visual images is 
presented in [22]. 

All the approaches, methods and software tools developed at the previous stage are used 
in this work for a comparative analysis of the OpenFOAM solvers accuracy for the problem of 
a rarefaction wave formation. 



3. Description of the test problem 
This work is devoted to the accuracy comparative assessment of OpenFOAM solvers 

when calculating the rarefaction wave. The comparison of accuracy was carried out on the 
basis of constructing a generalized computational experiment. The well-known classical 
problem of two-dimensional rarefaction wave formation in an inviscid gas flow around a flat 
plate at an angle of attack was considered as the basic problem. A scheme of such a flow is 
shown in Figure 1. A supersonic flow of an inviscid compressible gas runs onto a flat half-
plate at an angle of attack β, as shown in the figure. A rarefaction wave fan is formed at the 
end of the plate. 

 
Fig. 1. Flow scheme. The area of calculations. 

 
This problem is widely known as the Prandtl-Mayer flow. This problem has an exact 

solution, the description of which can be found in [13-15]. The exact solution in our case acts 
as a standard one. 

The problem is solved within the framework of a two-dimensional system of Euler 
equations for an inviscid gas. At the inlet boundary, the parameters of the unperturbed free 
stream are set at the Mach number M and a certain value of β. On the part of the lower 
boundary corresponding to the flat plate, the no-slip condition is set. At the outlet boundary, 
the boundary conditions are set for the zero derivatives of the gas-dynamic functions along 
the normal to the boundary. At the upper boundary for the velocity components, the 
boundary conditions are set similarly to the conditions for the input boundary. For the rest of 
the gas dynamic functions of the upper boundary, the conditions are set similarly to the 
conditions for the outlet boundary. 

Parametric studies were carried out for a Mach number equal to 2–4, with a step of 0.5, 
and an angle β = 6°, 10°, 15°, 20°. Four solvers of the OpenFOAM open software package [24-
29] - rhoCentralFoam, pisoCentralFoam, sonicFoam, and QGDFoam - took part in the 
comparative assessment of accuracy. For all these solvers, some actions were taken to unify 



the calculations when setting the boundary and initial conditions, similar to the procedures 
described in [17-21]. 

4. OpenFOAM solvers 
This section contains a short description of the solvers of the open source software 

package OpenFOAM, participating in the study on comparative assessment of their accuracy. 
The following solvers were used in the calculations: 

1) rhoCentralFoam (rCF) - based on the central-upwind scheme, which is a combination 
of the central-difference and upwind schemes [23]. The original Kurganov-Tadmor scheme 
[24] is a central difference scheme based on the Lax-Friedrichs scheme. It is characteristic of 
Godunov-type schemes that the calculation of the flow through the lateral faces of the cell 
requires the solution of the Riemann problem on the decay of an arbitrary discontinuity. The 
schemes with a central difference calculate the required values at the next time step without 
solving the Riemann problem; they integrate according to the Riemann fan. Consequently, 
there is no need to search for the Riemann integral and expansion of the solution in terms of 
characteristics, thus methods of this type are less computationally expensive. However, the 
OpenFOAM software package uses the Kurganov – Noel – Petrova scheme [25], which is a 
central upstream scheme. The scheme is central, since it does not require the solution of the 
Riemann problem, and upstream, since the information taken against the flow rate is used to 
estimate the width of the Riemann fan. This more accurate estimate makes the schemes less 
dissipative than the original Kurganov-Tadmor scheme. 

2) sonicFoam (sF) - based on the PISO (Pressure Implicit with Splitting of Operator) 
algorithm [26]. The essence of splitting methods is to separate the influence of various terms 
on the change in momentum in the computational cell. The contribution of the pressure 
gradient is decoupled from the contribution of spatial transport and viscous terms. When 
implementing the method, the predicted and corrected values of the velocity and pressure of 
the flow are introduced. Then the equations for pressure correction and momentum balance 
are solved iteratively. 

3) pisoCentralFoam [27] is a hybrid method, which is a combination of a central-uupwind 
scheme with the PISO algorithm. To smoothly switch between the implicit version of the 
Kurganov-Tadmor method and the splitting method, depending on the local flow parameters, 
a linear mixing of the flow expressions from both methods is used. This solver is not included 
in the standard set of solvers in the OpenFOAM software package. It was created by an 
independent team of developers at the Ivannikov Institute for System Programming of the 
RAS. 

4) The QGDFoam solver [28, 29] is based on the system of quasi-gasdynamic equations 
[30-32], developed by a group of researchers led by B.N. Chetverushkin. A significant 
difference between the QGD approach and the Navier-Stokes theory is the procedure of 
space-time averaging to determine the main gas-dynamic quantities. Additional smoothing in 
time is the reason for the appearance of additional dissipative terms in the QGD system. 
These dissipative terms have the form of the second spatial derivatives and are proportional 
to a small parameter having the dimension of time. The presence of a controllable parameter 
with dissipative terms makes it possible to successfully suppress unwanted oscillations in the 
numerical simulation of problems with discontinuities. Additional terms appear to be 
efficient regularizers. This solver is also not included in the standard set of solvers in the 
OpenFOAM software package. It was developed at Keldysh Institute of Applied Mathematics 
of the RAS under the leadership of professor T.G. Elizarova. 

5. Analysis and visualization of results 
This section presents the results of the calculations. Figure 2 shows the pressure field in 

the computational domain for the exact solution calculated in accordance with [13-15]. Figure 
3 shows a typical pressure field for all solvers. The figure shows the pressure field calculated 



using the QGDFoam solver. Note that all calculations for the QGDFoam solver were carried 
out at the value of the parameter α, which controls the dissipative properties of the solver, 
equal to α = 0.1. The figures show that the calculated pressure field presents a more blurry 
picture compared to the pressure field for an exact solution. 

 
Fig. 2. Pressure field for an exact solution. 

 
Fig. 3. Pressure field calculated using the QGDFoam solver. 

 
Figure 4 below shows a comparison of the pressure calculated for all solvers with the 

exact solution along the horizontal line АА1 (Fig. 1). The horizontal line is located at a height 
of 0.1 from the plate. Figure 5 shows the same comparison in close-up. 

 



 
Fig. 4. Comparison of solutions along the horizontal line AA1 for all solvers  

with exact solution 
 

 
Fig. 5. Comparison of solutions along the horizontal line AA1 for all solvers  

with the exact solution - close-up. 
 
Figures 4 and 5 show that the sonicFoam solver deviates most from the exact solution. 

The rhoCentralFoam, pisoCentralFoam and QGDFoam solvers show very close results. It 
should be noted that the curve for pisoCentralFoam shows constant noticeable fluctuations, 
which indirectly indicates the presence of unwanted non-destructive oscillations in the 
solution. 

Thus, we have a comparative assessment of the accuracy of the solvers along the line. 
However, this is clearly not enough. Let us construct estimates of the deviation from the exact 
solution for the entire computational domain in the L1 and L2 norms. To do this, calculate the 
relative error Err for the L1 and L2 standards as follows: 



𝐿1:   𝐸𝑟𝑟 =    ∑|𝑦𝑚 − 𝑦𝑚
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𝐿2:   𝐸𝑟𝑟 =    √∑|𝑦𝑚 − 𝑦𝑚
𝑒𝑥𝑎𝑐𝑡|2𝑆𝑚

𝑚
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Here ym is the pressure p, Sm is the cell area. The ym
exact values are obtained from the 

exact solution of the problem of the rarefaction wave formation [13-15]. The parameters of 
the incident flow vary as follows: the angle of flow deflection β = 6°, 10°, 15°, 20°, Mach 
number M = 2, 2.5, 3, 3.5, 4. Next, a generalized computational experiment is implemented, 
based on the results of which we calculate the error for of each solver for each combination 
(M, β). This enables us to construct for both norms the error in the form of a function of two 
variables Err (X1, Y1), where X1 = M and Y1 = β. These designations will be used in all 
subsequent figures. 

Next, consider a typical picture resulting from the construction of the error Err (X1, Y1) in 
different norms. For example, consider the results for the QGDFoam solver. 

Figure 6 shows the deviation from the exact solution in the L1 norm for the QGDFoam 
solver in the ranges of the governing parameters. Similarly, Figure 7 shows the results for the 
L2 norm. By the appearance of the surfaces shown in these figures, it can be argued that the 
error, in comparison with the exact solution, increases both with an increase in the Mach 
number and with an increase in the angle of flow deflection. 

 

 
Fig. 6. The deviation from the exact solution in the L1 norm for the QGDFoam solver in 

the ranges of variation of the governing parameters 
 



 
Fig. 7. The deviation from the exact solution in the L2 norm for the QGDFoam solver in 

the ranges of variation of the governing parameters 
 
Now let's look at comparing all four solvers at different error norms. Figure 8 shows the 

deviations from the exact solution in the L1 norm for all solvers in the ranges of the governing 
parameters. Similarly, Figure 9 shows deviations from the exact solution in the L2 norm for 
all solvers. 

 

 
Fig. 8. The deviation from the exact solution in the L1 norm for all solvers in the ranges of 

the governing parameters. 
 



 
Fig. 9. The deviation from the exact solution in the L2 norm for all solvers in the ranges of 

the governing parameters. 
 

As can be seen from Figures 8 and 9, qualitatively similar results were obtained for both 
norms. The rhoCentralFoam solver provides the smallest deviation from the exact solution. 
The next in order to deviate from the exact solution is the QGDFoam solver. The 
pisoCentralFoam solver gives slightly worse results. It should be noted that in the selected 
ranges of variation of the Mach number and the angle of deflection, the error surfaces for the 
QGDFoam and pisoCentralFoam solvers are located close to each other. The greatest 
deviation from the exact solution is observed in the results for SonicFoam solver. 

Further, all the obtained surfaces can be presented in an analytical form according to the 
method proposed and described in [22]. 

According to [22], to approximate curved surfaces we will use second-order polynomials, 
where the error for the surface under consideration can be represented as a function of the 
following form: 

Err = AX1 + BY1 + CX12 + DY12 + EX1Y1 + F 
Here also X1 is the Mach number M, Y1 is the flow deflection angle β, Err  is the error of 

comparison with the exact solution in the L1 or L2 norm. Coefficients A, B, C, D. E, F are 
calculated for a specific surface. 

Here is an example of a similar analytical dependence for a surface corresponding to the 
results for solver QGDFoam in the L2 norm (Fig. 9). 

Approximating the required surface by a polynomial of the second order using the least 
squares method, we obtain the following values for the coefficients 

 
A = 0.0007426759754917806 
B = 0.0005021159520976077 
C = 0.00020442857142857106 
D = - 0.000012584191705984598 
E = - 0.0000167566591422123 
F = 0.0038062569399619252 
 



For a more general comparative assessment, we will calculate the Error Index (EI), 
similarly to that proposed in [33]. According to [33], the Error Index (EI) is an average value 
for each error surface. The results for each solver in the L2 norm in accordance with Figure 9 
are presented in Table 1. 
Table 1. Error Index values for the problem of rarefaction wave formation 

Solver rCF QGDF pCF sF 

Error Index 0.00894 0.01134 0.01182 0.02285 

Table 1 shows that the values of the error index EI fully correspond to the relative 
positions of the numerical results presented in Figure 9.  

Thus, the results obtained in the form of visual representations of error surfaces, their 
analytical representations and calculated error indices allow the user of the above solvers to 
get a full understanding of their accuracy in the class of problems of a rarefaction wave 
formation. 

6. Conclusions 
The paper considers the processing and visualization of the results of a generalized 

computational experiment using a specific example. As an example, we used the results of a 
generalized computational experiment on the comparative assessment of the accuracy of four 
solvers of the OpenFOAM open software package. As a basic problem, the problem of the 
formation of a rarefaction wave when a supersonic flow of an inviscid gas flows around a plate 
at an angle of attack is used. The space of the defining parameters is set by the variation of 
two parameters in the selected ranges - the Mach number and the angle of flow deflection. 
For each solver, a discrete solution is obtained in the form of a dependence of the error on the 
defining parameters. A visual representation of the solution is shown, the example of 
analytical form of the solution is given as 2nd order polynomial.On the whole, the results 
obtained make it possible to estimate the degree of accuracy of each solver for the class of 
problems under consideration. 
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